Abstract **Document Sections** I. Introduction

Characterization of an Integrated Fluorescence-Detection Hybrid Device With Photodiode and Organic Light-Emitting Diode **IEEE Electron Device Letters** Published: 2006

Show More

Metadata

LED - ... View more

Abstract:

II. Turbidity Sensing

Arquttectures

Measuring

System

IV. Results and

V. Conclusion

Discussion

Authors

Figures

References

Citations

Keywords

Metrics

III. Turbidity

This paper presents a flexible turbidity sensing system that implements single and multiple infrared (IR) beam architectures. The hardware includes two pairs of IR LED -IR photodiode whose relative position permits the materialization of different architectures for turbidity optical measurement. The control of the sensing architecture is performed by a microcontroller based I/O board that is wireless connected to a PC for advanced control and data processing based on neural networks. Using intelligent processing procedures, the best turbidity measurement architecture is selected in terms of measurement accuracy for a given turbidity level. Elements of neural network design, optimization and embedding as part of an advanced processing software component

Abstract: This paper presents a flexible turbidity sensing system that implements single

and multiple infrared (IR) beam architectures. The hardware includes two pairs of IR

are presented.

Published in: SENSORS, 2006 IEEE

Date of Conference: 22-25 Oct. 2006 INSPEC Accession Number: 9718368

Date Added to IEEE Xplore: 07 May 2007 DOI: 10.1109/ICSENS.2007.355554

ISBN Information: Publisher: IEEE More Like This

> Print ISSN: 1930-0395 Conference Location: Daegu, Korea

> > (South)

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f in 🛩
	VIEW PURCHASED DOCUMENTS	PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	
		TECHNICAL INTERESTS	CONTACT & SUPPORT	

 $About \ IEEE \ \textit{Xplore} \ | \ Contact \ Us \ | \ Help \ | \ Accessibility \ | \ Terms of \ Use \ | \ Nondiscrimination \ Policy \ | \ Sitemap \ | \ Privacy \ \& \ Opting \ Out \ of \ Cookies \ | \$

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Metrics

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.